Code No: RT22022

II B. Tech II Semester Supplementary Examinations, Dec - 2015 SWITCHING THEORY AND LOGIC DESIGN

Time: 3 hours

(Com. to EEE, ECE, ECC, EIE)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. Answer **ALL** the question in **Part-A**

3. Answer any **THREE** Questions from **Part-B**

PART-A

- a) Convert the given Gray code number to equivalent binary 1001001011110010.
 b) Convert (A0F9.0EB)₁₆ to decimal, binary, octal.
 - c) Implement full adder with 4 to 1 multiplexer.

d) Implement the Boolean functions with a PLA $F(A,B,C) = \sum (0,1,2,4)$

- e) Explain the differences between asynchronous and synchronous counters.
- f) Draw the diagram of JK flip flop and its truth table. (3M+3M+4M+4M+4M+4M)

PART-B

2.	 a) Prove the following Boolean theorems (i) AB+A'C = (A+C)(A'+B) (ii) AB+A'C+BC = AB+A'C b) Simplify the following Boolean expressions (i) ABC+AB'+ABC' (ii) ACD+A'BCD. 	(8M+8M)
3.	 a) Minimize the following expressions using K-map and realize using NAND Gates. f = ∑ m (1,3,5,8,9,11,15) +d (2,13) b) Minimize the following expression using K-map and realize using NOR Gates. f = ∏ M (1,2,3,8,9,10,11,15) + d (7,1,5) 	(8M+8M)
4.	a) Design a combinational circuit whose input is a four bit number and whose output complement of the input number.b) Implement 64 x 1 multiplexer with four 16 x 1 and one 4 x 1 multiplexer.	t is the 2's (8M+8M)
5.	a) Explain the operation R-S master slave flip flop. Explain its truth tableb) Explain about the realization of SR flip-flop, JK flip-flop using D flip-flop.	(8M+8M)
6.	a) Draw and explain 4-bit universal shift register.b) Design a MOD-6 ripple counter.	(8M+8M)
7.	a) Explain in detail about sequential programmable devices.b) Explain in detail about ROM.	(8M+8M)